ADENOCARCINOMA, PRIMARY IN THE LUNG VersUS
METASTATIC
IMMUNOHISTOCHEMICAL MARKERS

ADINA CIURSAȘ*1, T.T.MAGHIAR1, M. PUȘCAȘIU12, GABRIELA MUȚIU1, P DEME3

University of Oradea, Medicine and Pharmacy Faculty, Department of Morphological Sciences1,
Pelican County Hospital of Oradea, Clinical Service of Pathology2
Western University of Vasile Goldis, Arad, Medicine, Dental Medicine and Pharmacy Faculty, Department of
General Medicine, Anatomy3

Correspondence address*: Adina Ciursaș M.D. – univ. assistant on Department of Morphological Sciences,
Faculty of Medicine and Pharmacy, University Oradea, street December 1, Oradea,
Romania
Adina Ciursas: street Călugăreni nr. 8, bl.C2, ap. 40, Oradea Romania mobile
phone: 0728 003 426, e-mail: adina.ciursas@gmail.com,
Pelican County Hospital of Oradea, Clinical Service of Pathology, Corneliu
Coposu street nr.2, phone:0259 422078 Oradea, Romania

ABSTRACT. The aim of this study was to use a pannel of antibody/immunohistochimical markers four lung
adenocarcinoma such as Ck 7, Ck 20, TTF – 1, and CD – 15, CEA in differentiating primary from metastatic
lung adenocarcinoma. The immunohistochimical markers should always be used in conjunction with the
clinical presentation, distribution of the lesions, and the morphology. Have been under study 292 patients
with lung carcinoma and in 86 (29,45 %). cases we found adenocarcinoma. On these cases we use a pannel
of immunohistochimical markers: Ck 7, Ck 20, TTF- 1, and CD – 15, CEA. Of the 86 lung adenocarcinoma
specimens there were 40 primary lung adenocarcinomas, 16 metastatic adenocarcinomas from breast and
30 metastatic adenocarcinomas from colon. We have found that 70% of primary lung adenocarcinomas
expressed TTF – 1, whereas all nonpulmonary adenocarcinomas lacked TTF – 1 staining. A combination of
TTF – 1/+ Ck 7 +/+ Ck 20 –/ was highly significantly associated with primary adenocarcinoma of lung. A
combination of TTF – 1 –/ Ck 7 –/ Ck 20 +/- was highly significantly associated with adenocarcinoma of
gastrointestinal origin. Our study has confirmed that expression of Ck 7, Ck 20, TTF – 1 and CD – 15, CEA
are useful immunohistochimical markers for diagnosis of lung tumors and for differential diagnosis of
primary lung adenocarcinomas from metastatic lung adenocarcinomas. Application of this panel of
antibodies might be expected to increase the accuracy of diagnosis.

RESUME. Le but de cette étude était d'utiliser un pannel d'anticorps/immunohistochimical adénocarcinome
de poumon marqueurs quatre comme Ck 7, Ck 20, TTF-1,et CD – 15, CEA pour différencier les primaires de
l'adénocarcinome du poumon métastatique. Les marqueurs immunohistochimiques doivent toujours être
utilisés de concert avec le tableau clinique, de la distribution des lésions et la morphologie. Nous avons
étudié 292 cas de cancer du poumon et dans 86 cas était l'adénocarcinome du poumon diagnostiqués. Ces
cas ont utilisé les marqueurs suivants à notre connaissance: Ck 7, Ck 20, TTF – 1, CD – 15, CEA. Les 86
cas d'adénocarcinome du poumon, 40 étaient adénocarcinome pulmonaire primaire, 16 adénocarcinome
métastatique du sein, 30 adénocarcinome métastatique du côlon. Il a été constaté que 70 % des
adénocarcinoamele pulmonaire primaire ont exprimé le TTF – 1, tout en extrapulmonaire n'expriment pas le
TTF – 1. Une combinaison d'U'TTF – 1 +/ Ck 7 +/ Ck20 –/ était très significativement associée à
adénocarcinome pulmonaire primaire. Une combinaison de TTF – 1 –/ Ck7 –/ Ck 20 + est très
significativement associée avec adénocarcinome d'origine digestive. Notre étude a montré que l'expression
Ck 7, Ck 20, TTF – 1, et CD – 15, CEA sont à notre connaissance, des marqueurs utiles dans le diagnostic
des tumeurs du poumon et adénocarcinomes pulmonaires de différenciation de l'adénocarcinoamele de
métastatique pulmonaire primaire. Application de ce groupe d'anticorps peut augmenter la précision du
diagnostic.

KEYWORDS: lung carcinoma, adenocarcinoma.: Ck 7, Ck 20, TTF – 1, CD – 15, CEA
INTRODUCTION

Adenocarcinoma has surpassed squamous carcinoma as the most common histologic subtype of lung cancer in many countries (Colby TV, Koss M, Travis WD, 1995). Although most cases are seen in smokers, it develops more frequently than any other histologic type of lung cancer in individuals (particularly women) who have never smoked (Colby TV, Koss M, Travis WD (1995), Khuder SA (2001))

Incidence rates, and the estimated rates by histological subtype have been reported for 30 populations for which a relatively high proportion of cases had a clear morphological diagnosis (Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB (2002)). Among men, only in certain Asian populations (Chinese, Japanese) and in North America (USA, Canada) does the incidence of adenocarcinoma exceed that of squamous cell carcinoma. In women, however, adenocarcinoma is the dominant histological type almost everywhere, except for Poland and England where squamous cell carcinomas predominate, and Scotland where small cell carcinoma is the most frequent subtype (Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB (2002)). Adenocarcinomas are particularly predominant in Asian females (72% cancers in Japan, 65% in Korea, 61% in Singapore Chinese). The differences in histological profiles are strongly influenced by the evolution of the epidemic of smoking-related lung cancer over ti

PATIENTS AND METHODS

Have been under study 292 patients with lung carcinoma of Clinical Emergency County Hospital Oradea in the period 2009-2013. All patients were drawn up an evaluation and a consent. Each patient had clinical and paraclinical examination conducted: pulmonary radiography, bronchoscopy exploratory and pulmonary diagnostics for the purpose of sampling for pulmonary biopsy or lymph node biopsy, the usual staining and immunohistochimistic specific markers for diagnosis of primary versus metastatic lung adenocarcinoma.

The selection criteria of the patients included in the immunohistochimical study of primary versus metastatic adenocarcinoma were:

- patients who had been diagnosed with adenocarcinoma in the emergency County Hospital Oradea, and on the basis of immunohistochemical markers that were performed in Clinical Pathology Service from Pelican County Hospital.
- patients have consented their introduction in the study after they have been explained ethical criteria, scientific, and confidentiality

Exclusion criteria:
- patients with lung carcinoma other than lung adenocarcinoma
- patients who have refused invasive medical procedure, respectively bronchoscopy and pulmonary biopsy
- uncooperative patients

Bronchoscopy

For diagnosis of lung carcinoma has been chosen as a method of investigation of the 292 cases (2009 – 2013) in the emergency County Hospital Oradea, bronchoscopy and biopsy Bronchoscopy is considered to be a method of imaging diagnosis for lung cancer, in particular with central location. It allows you to view the direct lug tracheal, main lobar bronchies and segmentation and obtain information on lesion headquarters, the infiltrative character, obstructive and/or bleeding, the extension to proximal (indispensable to stage, surveillance), existence of compression associated or at the level of carina. So they were taken over pulmonary biopsy.

Specimen and staining procedure

Human biological material represented by fragments of lung tissue taken by pulmonary biopsy via bronchoscopy have been subjected to classical histological techniques, namely the processing mounting in 10% buffered formalin at neutral pH, followed by paraffin embedded.

The paraffin blocks were sectioned at 5 micrometer and were stained with hematoxylin and eosin (fig 1) and by immunohistochemical markers in accordance with usual algorithm in Table 1. Slides were stained immediately because antigenicity of cut sections may diminish over time. To our knowledge, the immunohistochemical markers (Ck 7, Ck 20, TTF – 1, CD – 15 and CEA) were performed at the Clinical Pathology Service from Pelican County Hospital.

<table>
<thead>
<tr>
<th>Section</th>
<th>Stain</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hematoxylin- Eosin</td>
<td>Morphological diagnosis</td>
</tr>
<tr>
<td>3</td>
<td>Ck 7 – rabbit monoclonal primary antibody</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ck 20 – rabbit monoclonal primary antibody</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TTF – 1 – mouse monoclonal primary antibody</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CEA</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CD 15 – mouse monoclonal primary antibody</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – The stain algorithm
RESULTS

Anti – Ck 7 was raised against the carboxil terminal region of Ck 7 human protein spanning amino acids 451 – 469. Ck7 is a type II keratin that serves as a structural protein expressed by most of ducal, glandular and transitional epithelia. Ck 7 exibits a cytoplasmic localization. This antibody may be used to aid in the identification of normal and neoplastic cells of ovary, lung (fig.2) and those of colonic (fig. – 5) and prostate epithelial lineage which lack Ck 7 production.

Anti – Ck 20 is a monoclonal antibody against the carboxil region of the human Ck 20, type I cytokeratin protein of mature enterocytes and goblet cells of the gastric and intestinal mucosa. This antibody produces a cytoplasmic staining pattern, and may be used to aid in the identification of normal Ck 20 expressing cells and neoplastic (fig.6) cells of colonic epithelial lineage.

Ck 7 used in conjunction with Ck 20, metastasis from the mucinous epithelium and urothelium of gastrointestinal and prostatic lineage as well as some transitional cell carcinomas, and Markel cell tumors can be differentiated from primary neoplasm of tissue normally expressing CK 7 {Rubin BP, et al. (2001), Wang HL, et al. (2001), Inamura, K. Et al. (2005), Rekhi, B. et. al. (2008), Rossi, G. et al. (2007), Sack M. J, et al. (1997), Tsao SC, et al. (2007)} – table 2.

<table>
<thead>
<tr>
<th>Section</th>
<th>Immunohistochemical Markers</th>
<th>Primary tumor indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CK 7+/CK 20-</td>
<td>favors lung primary* - figure 2 &3</td>
</tr>
<tr>
<td>2</td>
<td>CK 7+/CK 20+</td>
<td>strongly favors transitional cells (urothelial) carcinoma*</td>
</tr>
<tr>
<td>3</td>
<td>CK 7-/CK 20+</td>
<td>favors colorectal carcinoma* -figure 5&6</td>
</tr>
<tr>
<td>4</td>
<td>CK 7-/CK 20-</td>
<td>no primary indication*</td>
</tr>
</tbody>
</table>

TTF – 1 is a 38 KD nuclear protein member of the family of homeodomain transcription factors. Exclusive expression in epithelial cells of the thyroid gland and lung allows TTF – 1 to be a usefull antibody for the classifications of tumors arising in these organs. Antibody to TTF – 1 demonstrates an intranuclear staining pattern. In context with other data TTF – 1 becomes useful in the investigation of metastatic adenocarcinomas of an unknown origin { Ordonez N (2001)} – (fig. 7).

TTF – 1, a transcription factor that plays an important role in the lung specific expression of surfactant proteins, is expressed in up to 75% of lung adenocarcinomas { Zamecnik J, Kodet R (2002) }.

Anti CD 15 mouse monoclonal primary antibody is a mouse monoclonal antibody direct against a carbohydrate epitope present on most granulocytic cells. Helps differentiate lung adenocarcinoma (CD15 +) - (fig. 4) from mesothelioma (CD15), although other markers are more specific.

CEA, carcinoembryonic antigen normally detected in glycocalyx of fetal epithelial cells. May play a role in the metastasis of cancer cells. Usually considered an epithelial marker with strong staining in adenocarcinomas. Used by pathologists in lung adenocarcinoma versus epithelioid mesothelioma: monoclonal CEA is 97% specific for lung adenocarcinoma (Histopathology 2006;48:223); exhibits diffuse cytoplasmic staining with membrane enhancement in adenocarcinoma, negative in mesothelioma; in breast cancer versus benign breast disease in FNA fluid: high levels are suggestive of malignancy (Arch Pathol Lab Med 2004;128:1251); in colorectal carcinoma – (fig 8)
Primary lung adenocarcinoma: Fig. 1–H&E Ob.20x.& Fig.2. Ck 7 + Ob. 20x

Primary lung adenocarcinoma: Fig 3 Ck 20 – Ob. 20x Fig 4. CD – 15 + Ob. 20x
Metastatic lung adenocarcinoma: Fig. 5 Ck 7 – Ob. 20x. Fig. 6 Ck 20 + Ob. 20x.

Metastatic lung adenocarcinoma: Fig. 7 TTF 1 – Ob. 20x. Fig. 8 CEA + Ob. 20x.

DISCUSSION

The immunohistochemical features of adenocarcinomas vary somewhat with the subtype and the degree of differentiation.

Primary adenocarcinomas of the lung usually exhibit Ck 7 and Ck 20 cytoplasmic immunoreactivity. 70% of primary lung adenocarcinomas exhibit nuclear TTF-1 immunoreactivity.

By using a pattern of immunohistochemical markers such as, Ck 7, Ck 20, TTF-1, and CD-15, and CEA was possible to narrow the primary site of a metastatic adenocarcinoma in the lung. Application of this panel of antibodies might be expected to increase the accuracy of diagnosis.

On the basis of this study it was found that from 292 cases of lung carcinoma we found: squamous carcinoma in 139 cases (47.60%), adenocarcinoma in 86 cases (29.45%), adenosquamous carcinoma in 6 cases (2.05%), small cell carcinoma in 49 cases (16.78%) and large cell carcinoma in 12 cases (4.12%).

In our study the dominant histological type blanket from lung carcinoma in most common underlying cause is squamous carcinoma (47.60%) and not adenocarcinoma (29.45%) as reported in the literature. Probably this reversal of the reports shall be produce by eliminating smoking in developed countries, and is also aware of the fact that most common underlying cause is squamous carcinoma in direct connection with the consumption of cigarettes, while adenocarcinom appearance it has nothing to do with the consumption of cigarettes.

Another reason why the incidence of adenocarcinoma of the lung is less in our study than squamous cell carcinoma could be that the majority of patients were investigated by bronchoscopy and lung adenocarcinoma occurs more frequently as peripheral nodules < than 4 cm (Colby TV, Koss M, Travis WD...
They infrequently present in a central location as a hilar or perihilar mass and only rarely show cavitation. Pleura and chest wall involvement is seen in approximately 15% of cases and this is more frequent than with other forms of lung cancer. Hilar adenopathy is less frequent with adenocarcinoma than with other forms of lung cancer (Travis WD, Brambilla E, Muller-Hermelink HK, et al: Pathology and Genetics: Tumours of the Lung, Pleura, Thymus and Heart. Lyon, France, IARC, 2004).

FIGURE LEGEND

<table>
<thead>
<tr>
<th>Table 1 – The stain algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2 – Common immunohistochemical markers associated with primary tumor indications</td>
</tr>
<tr>
<td>Fig. 1 Primary lung adenocarcinoma – H&E Ob. 20x.</td>
</tr>
<tr>
<td>Fig. 2 Primary lung adenocarcinoma – Ck 7 + Ob. 20x.</td>
</tr>
<tr>
<td>Fig. 3 Primary lung adenocarcinoma Ck 20 – Ob. 20x.</td>
</tr>
<tr>
<td>Fig. 4 Primary lung adenocarcinoma CD – 15 + Ob. 20x.</td>
</tr>
<tr>
<td>Fig. 5 Metastatic lung adenocarcinoma Ck 7 – Ob. 20x.</td>
</tr>
<tr>
<td>Fig. 6 Metastatic lung adenocarcinoma Ck 20 + Ob. 20x.</td>
</tr>
<tr>
<td>Fig. 7 Metastatic lung adenocarcinoma TTF – 1 + Ob. 20x.</td>
</tr>
<tr>
<td>Fig. 8 Metastatic lung adenocarcinoma CEA + Ob. 20x.</td>
</tr>
</tbody>
</table>

ABREVIATIONS

- Citokeratin 7 (Ck 7)
- Citokeratin 20 (Ck 20)
- Thyroid transcription factor 1 (TTF 1)
- Carcinoembryonic antigen (CEA)

REFERENCES